
Type-1 Hypervisor and Container Orchestration Platform 
on High-Performance Computing Cluster for 

AI and Big Data Applications

Dr. Sohail Khan
Associate Professor 
Sino-Pak Center for Artificial 
Intelligence, 
Pak-Austria Fachhochschule: Institute 
of Applied Sciences and Technology

Choudhry Shehryar
Student (BS-Software Engineering, 
4th Semester)

Date: 22-April 2024



Contents 
• Type-1 Hypervisor - Proxmox

• Setup and use-cases, scalability and high availability

• Use-cases and Demo

• Container Orchestration and Kubernetes - Rancher as IDE

• Kubernetes Pods and their deployment

• Installing services on kubernetes

• Persistent volume for kubernetes cluster

• Deployed services

• Conclusion

2



3

Understanding 
Type-1 
Hypervisor and 
Container 
Orchestration 
Platform



Type-1 hypervisors, also known as bare-metal hypervisors, are virtualization 

solutions that run directly on the host's hardware to manage guest operating 

systems. Unlike Type-2 hypervisors, they don't rely on a host operating system.

Key Features:

● Direct access to hardware resources

● High performance and efficiency

● Suitable for enterprise-level virtualization

4

Type-1 Hypervisor

VMware 
vSphere/ESXi



5

PROXMOX | Type-1 Hypervisor



Introduction to Proxmox Cluster

6



Features of Proxmox
● Proxmox Usage: We are using Proxmox  to deploy VM and LXC Containers.

● VM Deployment: Proxmox hosts virtual machines, manages them and those machines can 

be scaled, migrated and are Highly available.

● LXC Deployment: Lightweight Linux containers run on Proxmox, supporting efficient 

application deployment and utilizing scalability features.

● Resource Management: Proxmox optimizes CPU, memory, and storage usage across VMs 

and containers.

● High Availability: Our Hypervisor has Features like live migration ensure minimal downtime 

and continuous service availability.

● Scalability: We can always scale up our Vms and containers according to needs.

● Backup and Recovery: Vms and containers images can be stored into backup drives 

seamlessly to avoid loss of any data in node failures.

● Centralized Management: Proxmox unified interface simplifies monitoring and 

administration tasks.
7



Central Dashboard for Proxmox

8



Architecture Overview

9



10

Explanation of High Availability Concept in Proxmox



DEMO: Creating vms and lxc 

11



 Explaining Steps within HA Quorum
1. Node Failure Detection: The HA system detects the failure of a node within the cluster.

2. Quorum Recalculation: The Quorum algorithm recalculates the minimum number of 

active nodes required for service availability based on the remaining nodes.

3. Quorum Threshold Evaluation: The system evaluates whether the remaining active nodes 

meet the new Quorum threshold for maintaining service availability.

4. Automatic Failover Trigger: If the remaining active nodes fall below the Quorum 

threshold, the HA system triggers automatic failover mechanisms.

5. Resource Redistribution: Resources and workloads from the failed node are redistributed 

and migrated to the remaining active nodes to ensure continued service availability.

6. Service Restoration: Once resources are successfully migrated, the HA system restores 

service availability and resumes normal operations on the surviving nodes.

7. Node Recovery: If the failed node becomes available again, it undergoes a recovery process 

to rejoin the cluster and resume its role in maintaining high availability.
12



13

Showing Quorum in Action



Migrating VMs and LXC from one node to another is lightning fast, thanks to NFS deployed 

using TRUE NAS.

Our cluster leverages shared storage to ensure minimal downtime and efficient migration of 

workloads, enabling us to maintain Vms Availability during node maintenance or upgrades 

with minimum downtime.

Minimized Downtime: Shared storage enables quick and seamless migration of VMs and LXC, 

minimizing disruptions and downtime.

Improved Resource Utilization: Migration optimizes resource usage by balancing workloads 

across the cluster.

Enhanced Flexibility: Proxmox migration capabilities allow dynamic resource scaling and 

performance optimization without service interruptions.
14

Migrating VMs & LXC to other Nodes



DEMO: Migrating vms over nodes 

15

49 ms Downtime



Proxmox supports horizontal scaling of VMs and LXC instances by 
dynamically adjusting CPU, GPU, memory, and storage resources.
We can easily modify resource allocations to accommodate changing 
workload requirements, ensuring optimal performance and efficiency.

Mounting IO & PCI Devices:
Proxmox facilitates the mounting of IO devices like network adapters, 
storage controllers, and GPUs to VMs and LXC instances, enhancing 
functionality and performance.
This flexibility enables leveraging specialized hardware resources, tailoring 
virtualized environments to specific application needs.

16

Scalability of VMs and LXC:



Scalability demo 

17



18

KUBERNETES | Container Orchestration



Kubernetes is an open-source container orchestration platform developed by 

Google. It automates the deployment, scaling, and management of containerized 

applications.

19

Introduction to Kubernetes: Container 
Orchestration Platform

● Efficient container management

● Seamless Scalability on demand

● Service discovery and load balancing

● Self-healing: Restarts containers that fail and replaces them with healthy ones.

● Declarative configuration: Kubernetes uses YAML files for configuration

● Resource utilization: It optimizes resource allocation, ensuring efficient use of 

CPU and memory.



Architecture of kubernetes cluster: 

20



Rancher Dashboard

21



Rancher Dashboard is serving as a central hub for managing and analyzing our 

Kubernetes cluster.

Key Functions:

Cluster Management: Rancher Dashboard provides a user-friendly interface for 

managing all aspects of our Kubernetes cluster, including nodes, workloads, and 

configurations.

Monitoring and Analysis, Resource Allocation, Deployment and Orchestration: 

We utilize Rancher Dashboard for deploying and orchestrating applications within 

our Kubernetes cluster

Exploring Rancher Dashboard: Simplifying 
Kubernetes Management

22



Kubernetes Pods:

23



Pod Deployment

24

Deploying Pods through Rancher Dashboard: 
Offers a user-friendly graphical interface for visual deployment and 
management of Pods, suitable for users who prefer a 
point-and-click approach.

Deploying Pods through kubectl Command-line Tool: 
Provides flexibility and automation capabilities for deploying Pods 
programmatically, ideal for advanced users and scripting 
deployment workflows.



Key Use Cases:
● Microservices Architecture: Pods break down applications into manageable components for 

microservices-based deployments.

● Batch Processing Jobs: Kubernetes Pods execute batch processing tasks like data analytics and report 

generation.

● Stateful Applications: Pods provide persistent storage for stateful applications via external storage 

volumes.

● High-Performance Computing (HPC): Pods support high-performance computing workloads such as 

scientific simulations.

Benefits:
● Scalability: Pods enable horizontal scaling of applications to meet fluctuating demand

● Flexibility: With Pods, we can deploy diverse types of applications, from stateless web services to 

data-intensive tasks

● Resilience: Kubernetes manages Pod lifecycle, ensuring fault tolerance and automatic recovery in case 

of Pod failures

Pods: Use-Cases and Benefits

25



Services: 

26



Service Types and Use Cases:

ClusterIP:
Use Case: Internal microservices communication, databases, and backend APIs.
Description: Exposes Pods internally for secure microservices communication.

NodePort:
Use Case: Testing and development environments, external access for debugging or 
validation.
Description: Exposes Pods on static ports across all nodes for external access.

Load Balancer:
Use Case: Production applications requiring external access.
Description: Distributes external traffic across Pods for high availability.

27



Persistent Volumes for Pods

28

Databases: PVs are commonly used to provide persistent storage for databases, ensuring 

data persistence and reliability across Pod restarts or migrations.

File Storage: For applications requiring shared file storage, PVs with RWX access mode 

can be used to provide shared access to files across multiple Pods.



DEMO: Deploying JupyterHub

29



30

DEMO: 
Deploying a Static Website



Applications Running on Cluster
Overview of Our Local Deployments:

● Multimodal Model LLAVA 1.6 (Supports vision and text)
● LLMs ( llama-2, llama-3, Mistral 7B, Codegemma )
● Text-to-image model (Stable Diffusion XL)
● JupyterHub for Students

31



Central dashboard for Services 

32

http://cluster.paf-iast.edu.pk
The login credentials of the subdomain are:
Login: SpcaiComputeServices
Password: h\OuXIn$&DP`_XK1h%O:qU#i

http://cluster.paf-iast.edu.pk


Conclusion

33

● Recap of Key Points
● Importance of Proxmox and Kubernetes in Efficient 

Resource Utilization
● Handling different nature of tasks 
● Flexible IDE for handling both platform from a single 

domain
●



Q&A

Open Floor for Questions and Answers

34


